Step Size Adaptation in Evolution Strategies — Two Approaches

Sibylle D. Miiller Nicol N. Schraudolph

Institute of Computational Science
Swiss Federal Institute of Technology

8092 Ziirich, Switzerland

{muellers,nic,petros }@inf.ethz.ch

Abstract

We present two novel approaches for the
adaptation of step sizes in evolution strate-
gies: (i) First, step size rules are learned dur-
ing the optimization process. (ii) Second, an
adaptation scheme is improved for evolution
strategies with large population sizes.

1 Introduction

The development of step size adaptation schemes
for evolution strategies (ES) has received much
attention in the ES community. Starting from
an early attempt, the so-called “1/5 success rule”
[Rechenberg (1973)], applied to two-membered ES’s,
mutative step size control [Rechenberg (1994)] and
self-adaptation schemes [Béck (1996)] were developed,
followed by derandomized mutational step size con-
trol schemes [Hansen & Ostermeier (1997)]. The lat-
ter two methods have become the state-of-the-art tech-
niques that are usually implemented in ESs. These
control schemes employing empirical rules and param-
eters have been proven successful for solving a wide
range of real-world optimization problems.

On this topic, we suggest two novel approaches:

(i) Replace a priori defined adaptation rules by a more
general mechanism that can adapt the step sizes dur-
ing the evolutionary optimization process automati-
cally. The key concept involves the use of a learning
algorithm for the online step size adaptation. This im-
plies that the optimization algorithm is not supplied
with a pre-determined step size adaptation rule but in-
stead the rules are evolved by means of learning. As an
initial test for our approach, we consider the applica-
tion of reinforcement learning (RL) to the 1/5 success
rule in a two-membered ES, as described in Section 2.

Nikolaus Hansen
Fachgebiet fiir Bionik
Technische Universitét
13355 Berlin, Germany

hansen@bionik.tu-berlin.de

Petros Koumoutsakos

(ii) To make efficient use of selection information in
large populations, a novel scheme for adaptation of
the mutation distribution is devised. This approach
is implemented based on an existing powerful adap-
tation technique called covariance matrix adaptation
[Hansen & Ostermeier (1997)], presented in Section 3.

2 Learning how to Adapt Step Sizes

2.1 Reinforcement Learning

Reinforcement learning (RL) is a learning technique in
which an agent learns to find optimal actions for the
current state by interacting with its environment. The
agent should learn a control strategy, also referred to
as policy, that chooses the optimal actions for the cur-
rent state to maximize its cumulative reward. For this
purpose, the agent is given a reward by an external
trainer for each action taken. The reward can be im-
mediate or delayed. Sample RL applications are learn-
ing to play board games or learning to control mobile
robots. In the robot example, the robot is the agent
that can sense its environments such that it knows its
location, i.e., its state. The robot can decide which
action to choose, e.g., to move ahead or to turn from
one state to the next. The goal may be to reach a
particular location and for this purpose the agent has
to learn a policy.

The learning task can be divided into discrete time
steps, t. The agent determines at each step the en-
vironmental state s;, and decides upon an action ay.
By performing this action, the agent is transferred to
a new state s;r1 = 0(8¢,as) and given a reward ry41.
This reward is used to update a wvalue function that
can be either a state-value function V™ (s) depending
on states or an action-value function Q™ (s,a) depend-
ing on states and actions. To each state or state-action
pair, the largest expected future reward is assigned by
the optimal value functions V*(s) or Q*(s,a), respec-

tively. The optimal state-value function V*(s) can be
learned only if both the reward function r and the
function ¢ that describes how the agent is transferred
from state s; to state sg1 are explicitly known. Usu-
ally, however, r and § are unknown. In this case, the
optimal action-value function Q*(s,a) can be learned.

In this paper, we consider only RL methods for which
the agent can learn the () function, thereby being able
to select optimal actions without knowing explicitely
the reward function r or the state transition function
0(s,a). From this class of Temporal Difference (TD)
methods, we present the SARSA algorithm in pseu-
docode [Sutton (1998)]:

Initialize Q(s:,a:) arbitrarily.
Repeat (for each episode):
Initialize s¢.

Choose a: from s; using policy derived from Q(st,at)
using e.g. an c-greedy selection scheme.

Repeat (for each step of episode):
Take action a;, observe r;, Si41.

Choose a;4+1 from s;y; using policy from Q(si:+1,at+1)
using e.g. an c-greedy selection scheme.

Q(st,at) + Q(st,at) + afre + vQ(st+1, ar+1) — Q(st, at)]
St & St41, 0t — At41

until s; is terminal.

SARSA employs three learning parameters: « is a
learning rate, v a discount factor, and € a greediness
parameter. Constant learning rates a cannot be used
because we have to deal with a non-deterministic envi-
ronment. For the considered problem, a learning rate

of
1

NoGorya2) @

is recommended in [Mitchell (1997)] where N, is the
total number of times the state-action pair (s, a;) has
been visited up to and including the ¢-th iteration.
Discount factors v < 1 establish a preference for im-
mediate over future rewards, and may be necessary
to avoid that the expected future reward becomes in-
finite. We set v = 0.9 arbitrarily. The action with
the highest value function is chosen with probability
(1 —€) (greedy action selection) whereas an action is
selected at random with (small) probability e. We
choose € = 0.1.

oy =

2.2 Combination of RL and ES

The idea is to use a RL method to learn a step
size adaptation rule in ESs. We consider a two-
membered ES employing the 1/5 success rule. The
1/5 success rule was originally formulated as follows
[Schwefel (1995)]:

After every n mutations, check how many successes
have occured over the preceding 10n mutations. If this
number is less than 2n, multiply the step lengths by
the factor 0.85; divide them by 0.85 if more than 2n
successes occured.

In our approach, the frequency with which step sizes
are updated is kept the same (after every 10n muta-
tions). Also, the step size adaptation factor of 0.85
remains constant.

RL is introduced to learn from the measured states,
i.e. the success rates; the actions can be (1) to in-
crease the step size (divide by the step size adaptation
factor), (2) to decrease the step size (multiply by the
step size adaptation factor), or (3) to keep the step size
constant. As the success rate is determined by looking
back over the last 10n mutations, the total number
of different states is 10n + 1, including the case of a
success rate of zero. Therefore, the Q(s,a) table to be
learned consists of (10n+ 1) - 3 state-action pairs. The
reward is defined as

r= ||33(9) — w(g—Ay)” -sgn (f(y) — f(g—Ag)) (2)

where Ag is the difference in generations for which the
reward is computed. Q(s,a) is initialized with uni-
formly random numbers from the range [-1,1]. The
combined algorithm is called RL-ES.

From the 1/5 success rule, we would expect a () value
table as shown for n = 1 in Table 1.

Success rate Action: | Action: | Action:
[-10] increase | decrease | keep
0,1 +

2 +
3,4,5,6,7,8,9,10 +

Table 1: Schema of the) value table as it should look
if the 1/5 success rule is learned. The “+” denotes the
highest @ value in each row.

2.3 Results

The RL-ES algorithm is tested on the optimization
of the sphere and the Rosenbrock function in several
dimensions and compared with the original (1+1)-ES.
The two functions are defined as

1. fophere(Z) = T (z; — 1)?, 0@ =1, 2 =,

2. fRosenbrock(m) = 27;11(100 . (mf — .’L’i+1)2 +
(z; —1)?), 09 = 0.1, (0 =0,

and the optimization is terminated as soon as f <
10710, If the termination criterion is not met within
N; generations, the run is called not converged. We
determine a convergence rate that is the ratio of con-
verged runs over the total number of runs. The con-
vergence speed is measured by counting the number of
function evaluations until convergence.

The convergence rate and the average and standard
deviation for the number of generations to reach con-
vergence are listed in Table 2 for the (1+1)-ES and the
RL-ES.

Problem (14+1)-ES RL-ES
(conv. rate; Ny)

Sph 1D 97 £ 17 337 +£ 639
(1.00; 10%)

Sph 5D 470 £ 35 1346 + 1092
(0.99; 10%)

Sph 20D 1928 =70 4313 £ 1795
(0.94; 10%)

Sph 80D 8234 £ 80 19382 £ 9729
(1.00; 10%)

Ros 2D 16205 £ 973 31365 £ 65135
(1.00; 106)

Ros 5D 140227 £ 1487 | 311704 + 319148
(1.00; 107)

Table 2: Number of iterations until convergence is
reached for the (1+1)-ES and for the RL-ES. Results
are averaged over 30 runs except for the sphere func-
tion optimized by RL-ES (1000 runs). The conver-
gence rate for the (141)-ES is always 1.0.

The convergence rate of the RL-ES is close to that of
the (141)-ES and the number of iterations to conver-
gence is larger than that of the (14+1)-ES by a factor
of 2-3. Given that the RL-ES has to learn which of the
three actions to choose, this factor seems reasonable.

3 Adaptation of Step Sizes for Large
Populations

One of the commonly proposed advantages of
ESs is that they can be easily parallelized, see
e.g.[Schwefel (1995)]. ESs with A children per gener-
ation (population size \) are usually parallelized by
distributing the function evaluation for each of the A
children to a different processor. When the number of
children is smaller than the number of available pro-
cessors, the advantage of using ESs in parallel cannot
be fully exploited. Consequently, for a large number of

processors the algorithm should be able to use a large
population efficiently.

We consider a derandomized ES with covariance ma-
trix adaptation (CMA-ES) for which experimental re-
sults [Hansen & Ostermeier (1997)] show a clear con-
vergence velocity improvement when compared to
other ESs.

When optimizing reasonably complex (e.g. highly non-
separable functions), the adaptation time becomes the
limiting factor for the performance of the CMA-ES if
the problem dimension n exceeds a certain threshold,
usually n > 10. That is, the number of generations to
adapt the covariance matrix of the search distribution
to the function topology is the dominant factor in the
degraded performance of the algorithm. The reason is
that in the CMA-ES (n? + n)/2 elements of the sym-
metric covariance matrix C need to be adapted while
the search process itself only adjusts n variables.

For population sizes A > 20 the adaptation time be-
comes practically independent of the population size.
That means, the number of function evaluations re-
quired increases linearly with increasing population
size. In other words, the implementation of the origi-
nal CMA-ES on massively parallel computer architec-
tures, such as Beowulf clusters with hundreds of pro-
cessors, offers no substantial advantage compared to
the use of twenty processors. On complex functions,
the time complexity is of O(n?), independent of the
population size and the number of processors.

How can we use the CMA-ES efficiently on massively
parallel architectures with hundreds of processors?
How can we increase the efficiency of the CMA-ES,
when a large population is preferable to a small one
due to other reasons? To increase A alone does not
help shortening the adaptation time as pointed out
above. Additionally, a faster adaptation mechanism
of comparable reliability must be implemented. We
increase the adaptation rate of the covariance matrix
by exploiting a larger amount of information per gen-
eration.

The proposed modification for the covariance matrix
update reads as follows:

(1 — ceov) - cw
T
+ Ceov (acov : pgﬁl) (pggH))

+ (1 - acov) - Z(g+1)) 3)

cle+) —

where the change rate of the covariance matrix cgoy €
[0,1] and a blending factor acov € [0,1]. This modified
update is identical with the original method if aco, =
1.

The evolution path p, is an exponential average of
subsequently selected averaged mutation steps vC(z).
Here, the matrix square root v/C is obtained by an
eigenvalue decomposition of the covariance matrix C.
(2) denotes the average of selected mutation steps z;.
The outer product p.(p,.)? is a symmetrical n x n ma-
trix with rank one.

In contrast, Z is computed from VC(3; 22!)VC.
The difference lies in the fact that here we first take
the outer product of the selected mutation steps and
average afterwards. The symmetric n Xn matrix Z has
rank min(u,n), and therefore contains more selection
information.

An increased population usually contains more infor-
mation to be exploited in order to obtain a reduced
adaptation time. Compared to the original adaptation
mechanism the proposed modification usually requires
much fewer generations when A is large but could be
slightly less effective in small populations.

A detailed analysis of this approach can be found in
[Miiller, Hansen & Koumoutsakos (2002)].

4 Conclusions

We propose two novel methods for step size adapta-
tion in evolution strategies. The first algorithm com-
bines elements from the 1/5 success rule in a (141)-
ES with reinforcement learning (RL). Heuristics in the
(141)-ES are reduced and replaced with a more gen-
eral learning method. Convergence speed and rate
of the combined scheme called RL-ES, measured on
the sphere and Rosenbrock functions in several dimen-
sions, are compared with those of the (14+1)-ES. The
RL-ES yields the same convergence rate (100 %) as
the (14+1)-ES but is slower by a factor of about 2-3 on
both functions, a result that meets our expectations.
The second approach improves the adaptation of the
mutation distribution in ESs with large populations.
Its application on various test functions shows that the
number of generations to convergence can be decreased
from O(n?) to O(n) if O(n) processors are used in par-
allel, see [Miiller, Hansen & Koumoutsakos (2002)].

References

[Back (1996)] BAck, T., 1996, Evolutionary Algorithms
in Theory and Practice, Oxford University Press.

[Hansen & Ostermeier (1997)] HANSEN, N. & OSTER-
MEIER, A., 1997, Convergence Properties of Evolu-
tion Strategies with the Derandomized Covariance
Matrix Adaptation: The (u/pr, A)-CMA-ES, Pro-
ceedings of the 5th European Conference on Intelli-

gent Techniques and Soft Computing (EUFIT °97),
650-654.

[Mitchell (1997)] MrTcHELL, T. M., 1997, Machine Learn-
ing, McGraw-Hill.

[Miiller, Hansen & Koumoutsakos (2002)] MULLER, S.D.,
HANSEN, N. & KouMmouTsaAkos, P., 2002, In-
creasing the Serial and the Parallel Performance
of the CMA-Evolution Strategy with Large Popu-
lations, Proceedings of the 7th International Con-
ference on Parallel Problem Solving from Nature
(PPSN 2002).

[Rechenberg (1973)] RECHENBERG, L., 1973, Evolution-
sstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution, Frommann-
Holzboog, Stuttgart.

[Rechenberg (1994)] RECHENBERG, I., 1994, Evolution-
sstrategie 94, Frommann-Holzboog, Stuttgart.

[Schwefel (1995)] SCHWEFEL, H.-P., 1995, Evolution and
Optimum Seeking, John Wiley and Sons, New
York.

[Sutton (1998)] SutrToN, R., 1998, Reinforcement Learn-
ing — An Introduction, MIT Press, Cambridge.

