
Slope Centering: Making
Shortcut Weights Effective∗

May 9, 1998

Nicol N. Schraudolph
nic@idsia.ch

IDSIA, Corso Elvezia 36
6900 Lugano, Switzerland
http://www.idsia.ch/

Abstract

Shortcut connections are a popular architectural feature of multi-layer
perceptrons. It is generally assumed that by implementing a linear sub-
mapping, shortcuts assist the learning process in the remainder of the
network. Here we find that this is not always the case: shortcut weights
may also act as distractors that slow down convergence and can lead to
inferior solutions. This problem can be addressed with slope centering, a
particular form of gradient factor centering [2]. By removing the linear
component of the error signal at a hidden node, slope centering effectively
decouples that node from the shortcuts that bypass it. This eliminates
the possibility of destructive interference from shortcut weights, and thus
ensures that the benefits of shortcut connections are fully realized.

1 Shortcuts

Shortcut weights bypass a given hidden node by connecting its inputs directly
to the node(s) it projects to. They are a popular architectural feature of multi-
layer perceptrons, in particular those with more than one hidden layer. They
are generally thought to be beneficial to the learning process by providing a
linear sub-network that a) backpropagates error gradients to preceding layers
without the blurring and attenuation associated with the passage through a
layer of hidden nodes, and b) frees the bypassed hidden node(s) from respon-
sibility for the linear component (now implemented by the shortcuts) of the
mapping that it is to learn.
Here we take a closer look at the second argument. It is true that with

shortcuts added, a nonlinear network generally attains larger capacity and may
therefore be able to better approximate a given mapping. What about the
dynamics of gradient descent in such a network though — how do shortcuts
affect learning in the bypassed hidden node? Our experiments with single
hidden layer networks — where backpropagation through shortcuts does not
play a role — suggest that shortcuts actually slow down convergence, and may
lead to inferior solutions (see Section 3).
This should not come as a surprise — after all, the simultaneous adaptation

of additional parameters (the shortcut weights) at non-infinitesimal step sizes

∗Reprinted from Proc. 8th International Conference on Artificial Neural Networks [1].



must necessarily add noise to the error signal. The shortcuts add degrees of
freedom to which the bypassed hidden nodes are also coupled, and such redun-
dant parametrization impedes optimization by gradient descent. In essence,
while bypassed hidden nodes need no longer concern themselves with the lin-
ear component of the mapping to be learned, how are they to know this? In
order to reap the full benefit of shortcut weights, the linear component must
be explicitly subtracted from the error signal for bypassed nodes. With slope

centering we introduce an efficient and effective way of doing this.

2 Slope Centering

Consider a hidden node with net input y and activation given by z = f(y),
where f is a nonlinear (typically sigmoid) function. According to the chain
rule, the error gradient with respect to some objective E acquires the factor
f ′(y) — the node’s current slope — as it is backpropagated through f :

∂E

∂y
= f ′(y)

∂E

∂z
(1)

We can split this gradient into two orthogonal components:

∂E

∂y
=
[

f ′(y)−
〈

f ′(y)
〉

] ∂E

∂z
+
〈

f ′(y)
〉 ∂E

∂z
(2)

where 〈·〉 denotes averaging over input patterns. This average evolves gradu-
ally on the slow time scale of the network’s weight dynamics; for the pattern-
dependent computation of the instantaneous gradient in (2) we can therefore
assume 〈f ′(y)〉 ≈ const. Note that this means that the second term in (2) is
linear: it is the error that would be backpropagated by a linear node in place of
the present (nonlinear) hidden node. Conversely, by subtracting this linear er-
ror from it, we have made the other (first) term purely nonlinear. We have thus
split the hidden node’s error signal into its linear and nonlinear components.
As we have argued above, the linear component of the error should be

removed for hidden nodes that are bypassed by shortcuts. This leads us to
propose backpropagating error signals in that case via

∂E

∂y
:=

[

f ′(y)−
〈

f ′(y)
〉

] ∂E

∂z
(3)

Since this differs from (1) in that the slope f ′(y) has been centered about zero
by subtracting its average, we refer to this technique as slope centering. Note
that (3) does not describe the error gradient proper; it rather expresses that
gradient projected into the null space of the shortcut weights.1 We have thus
effectively decoupled the hidden node from its shortcuts; our empirical results
(see Section 3) show that such an orthogonalization of parameters can be highly
beneficial to the network’s learning process.

1Rather than introduce additional notation to that effect, we have abused the partial
derivative notation here as a placeholder for the slope-centered backpropagated error signal.



In online learning, the average slope 〈f ′(y)〉 in (3) must be approximated,
typically by an exponential running average. When batch learning is used,
the average slope over the current batch may be approximated by the value
computed for the previous batch. Alternatively, one may calculate the slope-
centered error (3) for the current batch exactly by accumulating

∑

f ′(y),
∑

∂E/∂z, and
∑

f ′(y) ∂E/∂z, then using the fact that
〈

[

f ′(y)−
〈

f ′(y)
〉

] ∂E

∂z

〉

=

〈

f ′(y)
∂E

∂z

〉

−
〈

f ′(y)
〉

〈

∂E

∂z

〉

(4)

3 Empirical Results

We now demonstrate the effect of slope centering on speed and reliability of con-
vergence as well as generalization performance in feedforward networks trained
by accelerated gradient descent. After describing the general setup of the exper-
iments, we present our respective results for two benchmarks: the toy problem
of symmetry detection in binary patterns, and a difficult vowel recognition task.

3.1 Experimental Setup

For each benchmark we ran four experiments examining the separate and com-
bined effect of shortcuts and slope centering. Each experiment consisted of
a number of runs starting from different initial weights drawn from a zero-
mean Gaussian distribution with standard deviation 0.3. Training was done in
batch mode; the hidden-to-output weights of the network were updated before

backpropagating error through them [3]. In order to make the optimization as
efficient as possible, we tested a number of acceleration methods, then chose the
combination of two (vario-η and bold driver) that yielded the fastest reliable
convergence overall.2 Vario-η [4, 5, page 48] sets the local learning rate for each
weight inversely to the standard deviation of its stochastic gradient:

∆wij =
−η gij

%+ σ(gij)
, gij ≡

∂E

∂wij

, σ(u) ≡

√

〈u2〉 − 〈u〉
2
, (5)

with the small positive constant % = 0.1 preventing division by near-zero values.
The global learning rate η was adjusted by the bold driver technique [6, 7, 8, 9]:
after each batch in which the error did not increase by more than ε = 10−10 (for
numerical stability), η is increased by 2%. Otherwise, the last weight change
is undone, and η decreased by 50%. Due to the amount of recomputation they
require, we did count those “failed” epochs in our performance figures.

3.2 Symmetry Detection Problem

A fully connected feedforward network with 8 inputs, 8 hidden units (tanh
nonlinearity) and a single logistic output is to learn the symmetry detection

2Note that any performance advantage for slope centering reported thereafter has thus
been realized on top of a state-of-the-art accelerated gradient method as control.



slopes: conventional centered

mean ± st.d. direct comparison: mean ± st.d.topology:
quartiles # of faster runs quartiles

65.4 ± 15.9 52 – 48 * 51.6 ± 16.2

short-
no

57/62/70 81 0 61 4 43/64.5/∞

cuts? 90.4 ± 31.1 17
|

39
×

99 95
|

33.1 ± 8.6
yes

69.5/80/102 0 – 100 28/31/35

* Mean and standard deviation exclude 34 runs which did not converge.

Table 1: The number of epochs required to converge to criterion on the symmetry
detection task, with vs. without slope centering and/or shortcuts. Runs with identical
random seeds are also compared directly (may sum to less than 100 due to ties).

task: given a binary pattern (composed of ±1s) at the input, it is to signal
whether the pattern is symmetric about its middle axis (target = 1) or not
(target = 0). The network was trained on all 256 patterns, using a cross-entropy
loss function and error centering [2, 10], until the root-mean-square error of its
output fell below 0.01. Since the complement of a symmetric bit pattern is also
symmetric, the symmetry detection task has no linear component at all — we
therefore expected shortcuts to be of minimal benefit here.
Table 1 shows that indeed adding shortcuts alone was not beneficial — it

slowed down convergence in over 80 of the 100 runs performed, and significantly
increased the c.v. (coefficient of variation). Subsequent addition of slope cen-
tering, however, brought about an almost 3-fold increase in learning speed, and
restored the original c.v. of about 1/4. When used together, slope centering
and shortcuts never increased convergence time, and on average cut it in half.
By contrast, slope centering without shortcuts failed to converge about 1/3 of
the time. This is no surprise: since slope centering projects the backpropagated
gradient into the null space of (linear) shortcut weights, the hidden nodes can
no longer reduce the linear component of the error signal on their own.

3.3 Vowel Recognition Problem

We also tested our approach on Deterding’s speaker-independent vowel recog-
nition data [11], which has been adopted [12] as a popular [13, 14, 15, 16] neural
network benchmark. The task is to recognize the eleven steady-state vowels of
British English in a speaker-independent fashion, given 10 spectral features of
the speech signal. The data consists of 990 patterns: 6 instances for each of
the 11 vowels spoken by each of 15 speakers. We follow the conventional split
into training (first 8 speakers) and test set (remaining 7).
We trained fully connected feedforward networks with 10 inputs, 22 logistic

hidden units, and 11 logistic output units by minimization of cross-entropy loss.
The target was 1 for the output corresponding to the correct vowel, 0 for all
others. After each epoch, the network’s generalization ability was measured in



1 10 100 1000

epochs of training

0.4

0.6

0.8

1.0

av
er

ag
e 

te
st

 s
et

 e
rr

or

a)

b)

c)

d)

Figure 1: Evolution of the average test set error while learning the vowel recognition
task with shortcut weights (filled marks) and/or slope centering (dashed lines). The
two techniques worsen performance individually, while their conjunction improves it.

terms of its misclassification rate on the test set. For the purpose of testing, a
maximum likelihood approach was adopted: the network’s highest output for
a given test pattern was taken to indicate its classification of that pattern.
Figure 1 shows how the test set error (averaged over 25 runs) evolved during

training. While the addition of shortcut weights alone (b) worsened general-
ization performance (cf. a), in conjunction with slope centering (d) it resulted
in faster convergence (by a factor of five), and to lower test test errors. The
use of slope centering without shortcuts again proved ill-advised (c).

4 Conclusion

We have introduced slope centering, a technique that modifies a hidden node’s
error signal so as to eliminate interference from shortcut weights that bypass it.
Using an already accelerated gradient method as a baseline, we found in two
benchmarks that while shortcuts alone worsened performance, their combina-
tion with slope centering further sped up learning significantly. Slope centering
is one example of the more general gradient factor centering approach [2]. It
has long been known that centering input and hidden unit activities is bene-
ficial [17, 18], and recently we have extended this notion to the centering of
error signals [10]. In future work, we will investigate the centering of additional
gradient factors, such as those that occur in networks with multiplicative nodes.

Acknowledgment

This work was supported by the Swiss National Science Foundation under grant
numbers 2100–045700.95/1 and 2000–052678.97/1.



References

[1] N. N. Schraudolph, “Slope centering: Making shortcut weights effective”,
in Proceedings of the 8th International Conference on Artificial Neural Net-

works, L. Niklasson, M. Bodén, and T. Ziemke, Eds., Skövde, Sweden,
1998, Perspectives in Neural Computing, pp. 523–528, Springer Verlag, Berlin,
¢ ftp://ftp.idsia.ch/pub/nic/ slope.ps.gz¤.

[2] N. N. Schraudolph, “Centering neural network gradient factors”, In Orr and
Müller [19], pp. 207–226, ¢ ftp://ftp.idsia.ch/pub/nic/center.ps.gz¤.

[3] S. Shah, F. Palmieri, and M. Datum, “Optimal filtering algorithms for fast
learning in feedforward neural networks”, Neural Networks, 5:779–787, 1992.

[4] R. Neuneier and H. G. Zimmermann, “How to train neural networks”, In Orr
and Müller [19], pp. 373–423.

[5] H. G. Zimmermann, “Neuronale Netze als Entscheidungskalkül”, in Neurona-

le Netze in der Ökonomie: Grundlagen und finanzwirtschaftliche Anwendungen,
H. Rehkugler and H. G. Zimmermann, Eds., pp. 1–87. Vahlen Verlag, Munich,
1994.

[6] A. Lapedes and R. Farber, “A self-optimizing, nonsymmetrical neural net for
content addressable memory and pattern recognition”, Physica, D 22:247–259,
1986.

[7] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, “Acceler-
ating the convergence of the back-propagation method”, Biological Cybernetics,
59:257–263, 1988.

[8] R. Battiti, “Accelerated back-propagation learning: Two optimization methods”,
Complex Systems, 3:331–342, 1989.

[9] R. Battiti, “First- and second-order methods for learning: Between steepest
descent and Newton’s method”, Neural Computation, 4(2):141–166, 1992.

[10] N. N. Schraudolph and T. J. Sejnowski, “Tempering backpropagation networks:
Not all weights are created equal”, in Advances in Neural Information Processing

Systems, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. 1996, vol. 8,
pp. 563–569, The MIT Press, Cambridge, MA.

[11] D. H. Deterding, Speaker Normalisation for Automatic Speech Recognition, PhD
thesis, University of Cambridge, 1989.

[12] A. J. Robinson, Dynamic Error Propagation Networks, PhD thesis, University
of Cambridge, 1989.

[13] M. Finke and K.-R. Müller, “Estimating a-posteriori probabilities using stochas-
tic network models”, in Proceedings of the 1993 Connectionist Models Summer

School,, M. C. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, and A. S.
Weigend, Eds., Boulder, CO, 1994, Lawrence Erlbaum Associates, Hillsdale, NJ.

[14] M. Herrmann, “On the merits of topography in neural maps”, in Proceedings of

the Workshop on Self-Organizing Maps, T. Kohonen, Ed. Helsinki University of
Technology, 1997, pp. 112–117.

[15] S. Hochreiter and J. Schmidhuber, “Unsupervised coding with lococode”, in
Proceedings of the 7th International Conference on Artificial Neural Networks,
Lausanne, Switzerland, 1997, pp. 655–660, Springer Verlag, Berlin.



[16] G. W. Flake, “Square unit augmented, radially extended, multilayer percep-
trons”, In Orr and Müller [19], pp. 145–163.

[17] B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson, Jr., “Stationary
and nonstationary learning characteristics of the LMS adaptive filter”, Proceed-
ings of the IEEE, 64(8):1151–1162, 1976.

[18] Y. LeCun, I. Kanter, and S. A. Solla, “Eigenvalues of covariance matrices:
Application to neural-network learning”, Physical Review Letters, 66(18):2396–
2399, 1991.

[19] G. B. Orr and K.-R. Müller, Eds., Neural Networks: Tricks of the Trade, vol.
1524 of Lecture Notes in Computer Science, Springer Verlag, Berlin, 1998.


