View publications... | Download the DjVu plug-in: |
by Topic
• Ising Models • Gradient Descent • Quasi-Newton Methods • Stochastic Meta-Descent • Preconditioning • Kernel Methods • Reinforcement Learning • Unsupervised Learning • Entropy Optimization • Competitive Learning • Evolutionary Algorithms • Bioinformatics • Computer Vision • Other •
Ising Models
N. N. Schraudolph. Polynomial-Time
Exact Inference in NP-Hard Binary MRFs via Reweighted Perfect Matching.
In 13th Intl. Conf. Artificial Intelligence and Statistics
(AIstats), pp. 717–724, Journal of Machine
Learning Research, Chia Laguna, Italy, 2010.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and D. Kamenetsky.
Efficient Exact Inference in Planar Ising Models. In
Advances in Neural Information Processing Systems (NIPS), pp. 1417–1424,
Curran Associates, Inc., 2009.
Long version
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and D. Kamenetsky.
Efficient Exact Inference in Planar Ising Models. Technical Report 0810.4401,
arXiv, 2008.
Short
version
Details
Download:
[pdf] [djvu] [ps.gz]
Gradient Descent
N. N. Schraudolph and T. Graepel.
Combining Conjugate Direction Methods with Stochastic Approximation
of Gradients. In Proc. 9th Intl. Workshop Artificial
Intelligence and Statistics (AIstats), pp. 7–13, Society for Artificial
Intelligence and Statistics, Key West, Florida, 2003.
Earlier
version Related paper
Details
Download:
[pdf] [djvu] [ps.gz]
T. Graepel and N. N. Schraudolph.
Stable Adaptive Momentum for Rapid Online Learning in Nonlinear Systems.
In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 450–455,
Springer Verlag, Berlin, Madrid, Spain, 2002.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and T. Graepel.
Towards Stochastic Conjugate Gradient Methods. In Proc. 9th Intl.
Conf. Neural Information Processing (ICONIP), pp. 853–856,
IEEE, 2002.
Related paper
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and T. Graepel.
Conjugate Directions for Stochastic Gradient Descent. In Proc. Intl. Conf.
Artificial Neural Networks (ICANN), pp. 1351–1356, Springer
Verlag, Berlin, Madrid, Spain, 2002.
Latest
version Related paper
Details
Download:
[pdf] [djvu] [ps.gz]
Quasi-Newton Methods
J. Yu, S. Vishwanathan, S.
Günter, and N. N. Schraudolph.
A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in
Machine Learning. Journal of Machine Learning
Research, 11:1145–1200, 2010.
Short
version
Details
Download:
[pdf] [djvu] [ps.gz]
P. Sunehag, J. Trumpf, S. Vishwanathan,
and N. N. Schraudolph.
Variable Metric Stochastic Approximation Theory. In Proc. 12th Intl.
Conf. Artificial Intelligence and Statistics (AIstats), pp. 560–566,
Journal of Machine Learning Research, Clearwater
Beach, Florida, 2009.
Details
Download:
[pdf] [djvu] [ps.gz]
J. Yu, S. Vishwanathan, S.
Günter, and N. N. Schraudolph.
A Quasi-Newton Approach to Nonsmooth Convex Optimization. In Proc. 25th
Intl. Conf. Machine Learning (ICML), pp. 1216–1223, Omnipress, Helsinki,
Finland, 2008.
Long version
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph, J. Yu, and S. Günter.
A Stochastic Quasi-Newton Method for Online Convex
Optimization. In Proc. 11th Intl. Conf. Artificial
Intelligence and Statistics (AIstats), pp. 436–443,
Journal of Machine Learning Research, San Juan, Puerto Rico, 2007.
Details
Download:
[pdf] [djvu] [ps.gz]
Stochastic Meta-Descent
D. Chik, J. Trumpf, and N. N. Schraudolph.
Using an Adaptive VAR Model for Motion Prediction
in 3D Hand Tracking. In 8th Intl. Conf. Automatic
Face & Gesture Recognition (FG), IEEE, Amsterdam, Netherlands, 2008.
Details
Download:
[pdf] [djvu]
Z. Li, J. Chen, and N. N. Schraudolph.
An Improved Mean-Shift Tracker with Kernel Prediction and Scale Optimisation
Targeting for Low-Frame-Rate Video Tracking. In 19th
Intl. Conf. Pattern Recognition (ICPR), Tampa, Florida, 2008.
Details
Download:
[pdf] [djvu] [ps.gz]
Z. Li, J. Chen, A. Chong, Z. Yu, and N. N. Schraudolph.
Using Stochastic Gradient-Descent Scheme in Appearance
Model Based Face Tracking. In Proc. Intl. Workshop Multimedia Signal Processing
(MMSP), IEEE, Cairns, Australia, 2008.
Details
Download:
[pdf] [djvu] [ps.gz]
M. Bray, E. Koller-Meier, N. N. Schraudolph,
and L. Van Gool. Fast Stochastic Optimization for Articulated
Structure Tracking. Image and Vision Computing, 25(3):352–364, 2007.
Earlier version
Details
Download:
[pdf] [djvu] [ps.gz]
D. Chik, J. Trumpf, and N. N. Schraudolph.
3D Hand Tracking in a Stochastic Approximation Setting. In 2nd
Workshop on Human Motion: Understanding, Modeling, Capture and Animation,
11th IEEE Intl. Conf. Computer Vision (ICCV), pp. 136–151,
Springer Verlag, Berlin, Rio de Janeiro, Brazil,
2007.
Details
Download:
[pdf] [djvu] [ps.gz]
S. Günter, N. N. Schraudolph, and S. Vishwanathan.
Fast Iterative Kernel Principal Component Analysis.
Journal of Machine Learning Research, 8:1893–1918, 2007.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph, S. Günter, and S. Vishwanathan.
Fast Iterative Kernel PCA. In Advances in
Neural Information Processing Systems (NIPS), pp. 1225–1232, MIT Press,
Cambridge, MA, 2007.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph, J. Yu, and D. Aberdeen.
Fast Online Policy Gradient Learning with SMD Gain
Vector Adaptation. In Advances in Neural
Information Processing Systems (NIPS), pp. 1185–1192, MIT Press, Cambridge,
MA, 2006.
Details
Download:
[pdf] [djvu] [ps.gz]
S. Vishwanathan, N.
N. Schraudolph, M. W. Schmidt, and K. Murphy. Accelerated Training
of Conditional Random Fields with Stochastic Gradient Methods. In
Proc. 23rd Intl. Conf. Machine Learning (ICML), pp. 969–976,
ACM Press, 2006.
Details
Download:
[pdf] [djvu] [ps.gz]
S. Vishwanathan, N.
N. Schraudolph, and A. J. Smola.
Step Size Adaptation in Reproducing Kernel Hilbert Space.
Journal of Machine Learning Research, 7:1107–1133, 2006.
Details
Download:
[pdf] [djvu] [ps.gz]
M. Bray, E. Koller-Meier, P. Müller, N.
N. Schraudolph, and L. Van Gool. Stochastic Optimization
for High-Dimensional Tracking in Dense Range Maps. IEE Proceedings
Vision, Image & Signal Processing, 152(4):501–512, 2005.
Earlier
version
Details
Download:
[pdf] [djvu] [ps.gz]
A. Karatzoglou, S. Vishwanathan,
N. N. Schraudolph, and A.
J. Smola. Step Size-Adapted Online Support Vector Learning.
In Proc. 8th Intl. Symp. Signal Processing & Applications, IEEE,
2005.
Details
Download:
[pdf] [djvu] [ps.gz]
M. Bray, E. Koller-Meier, N. N. Schraudolph,
and L. Van Gool. Stochastic Meta-Descent for Tracking Articulated
Structures. In IEEE Workshop on Articulated and Nonrigid Motion,
Conference on Computer Vision and Pattern Recognition (CVPR), Washington, D.C.,
2004.
Latest version
Details
Download:
[pdf] [djvu] [ps.gz]
M. Bray, E. Koller-Meier, P. Müller, L. Van Gool, and N.
N. Schraudolph. 3D Hand Tracking by Rapid Stochastic Gradient
Descent Using a Skinning Model. In First European Conference
on Visual Media Production (CVMP), pp. 59–68, London, 2004.
Latest
version
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Fast
Curvature Matrix-Vector Products for Second-Order Gradient Descent.
Neural Computation, 14(7):1723–1738,
2002.
Earlier version
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Fast
Curvature Matrix-Vector Products. In Proc. Intl. Conf. Artificial Neural Networks
(ICANN), pp. 19–26, Springer Verlag,
Berlin, Vienna, Austria, 2001.
Latest version
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and X. Giannakopoulos.
Online Independent Component Analysis With Local Learning
Rate Adaptation. In Advances in Neural Information
Processing Systems (NIPS), pp. 789–795, The MIT Press, Cambridge, MA,
2000.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Online
Learning with Adaptive Local Step Sizes. In Neural Nets---WIRN Vietri-99: Proc.
11th Italian Workshop on Neural Networks, pp. 151–156,
Springer Verlag, Berlin, Vietri sul Mare, Salerno,
Italy, 1999.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Local
Gain Adaptation in Stochastic Gradient Descent. In Proc. Intl. Conf. Artificial
Neural Networks (ICANN), pp. 569–574, IEE, London, Edinburgh, Scotland,
1999.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Online
Local Gain Adaptation for Multi-Layer Perceptrons. Technical Report IDSIA-09-98,
Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, 1998.
Details
Download:
[pdf] [djvu] [ps.gz]
Preconditioning
N. N. Schraudolph. Accelerated
Gradient Descent by Factor-Centering Decomposition. Technical Report
IDSIA-33-98, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, 1998.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Slope
Centering: Making Shortcut Weights Effective. In Proc. Intl. Conf. Artificial
Neural Networks (ICANN), pp. 523–528, Springer
Verlag, Berlin, Skövde, Sweden, 1998.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Centering
Neural Network Gradient Factors. In G. B. Orr and K. Müller, editors, Neural
Networks: Tricks of the Trade,
Lecture Notes in Computer Science, pp. 207–226, Springer
Verlag, Berlin, 1998.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and T.
J. Sejnowski. Tempering Backpropagation Networks:
Not All Weights Are Created Equal. In Advances
in Neural Information Processing Systems (NIPS), pp. 563–569, The MIT
Press, Cambridge, MA, 1996.
Details
Download:
[pdf] [djvu] [ps.gz]
Kernel Methods
S. Vishwanathan, N.
N. Schraudolph, R. Kondor, and K. Borgwardt. Graph Kernels.
Journal of Machine Learning Research,
11:1201–1242, 2010.
Short version
Details
Download:
[pdf] [djvu] [ps.gz]
K. M. Borgwardt, H. Kriegel, S.
Vishwanathan, and N. N. Schraudolph.
Graph Kernels for Disease Outcome Prediction from
Protein-Protein Interaction Networks. In Proc. Pacific Symposium on Biocomputing
(PSB), pp. 4–15, World Scientific, Maui, Hawaii, 2007.
Details
Download:
[pdf] [djvu] [ps.gz]
S. Günter, N. N. Schraudolph, and S. Vishwanathan.
Fast Iterative Kernel Principal Component Analysis.
Journal of Machine Learning Research, 8:1893–1918, 2007.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph, S. Günter, and S. Vishwanathan.
Fast Iterative Kernel PCA. In Advances in
Neural Information Processing Systems (NIPS), pp. 1225–1232, MIT Press,
Cambridge, MA, 2007.
Details
Download:
[pdf] [djvu] [ps.gz]
S. Vishwanathan, K. Borgwardt,
and N. N. Schraudolph.
Fast Computation of Graph Kernels. In Advances
in Neural Information Processing Systems (NIPS), pp. 1449–1456, MIT
Press, Cambridge, MA, 2007.
Long version
Details
Download:
[pdf] [djvu] [ps.gz]
S. Vishwanathan, N.
N. Schraudolph, and A. J. Smola.
Step Size Adaptation in Reproducing Kernel Hilbert Space.
Journal of Machine Learning Research, 7:1107–1133, 2006.
Details
Download:
[pdf] [djvu] [ps.gz]
A. Karatzoglou, S. Vishwanathan,
N. N. Schraudolph, and A.
J. Smola. Step Size-Adapted Online Support Vector Learning.
In Proc. 8th Intl. Symp. Signal Processing & Applications, IEEE,
2005.
Details
Download:
[pdf] [djvu] [ps.gz]
Reinforcement Learning
N. N. Schraudolph, J. Yu, and D. Aberdeen.
Fast Online Policy Gradient Learning with SMD Gain
Vector Adaptation. In Advances in Neural
Information Processing Systems (NIPS), pp. 1185–1192, MIT Press, Cambridge,
MA, 2006.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph, P. Dayan, and T.
J. Sejnowski. Learning to Evaluate Go Positions
via Temporal Difference Methods. In N. Baba and L. C. Jain, editors, Computational
Intelligence in Games, Studies in Fuzziness and Soft Computing, pp. 77–98,
Springer Verlag, Berlin, 2001.
Earlier
version
Details
Download:
[pdf] [djvu] [ps.gz]
J. Schmidhuber, J. Zhao, and N. N. Schraudolph.
Reinforcement Learning with Self-Modifying Policies. In S. Thrun
and L. Pratt, editors, Learning to Learn, pp. 293–309, Kluwer Academic
Publishers, Norwell, MA, 1998.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph, P. Dayan, and T.
J. Sejnowski. Temporal Difference Learning of Position Evaluation
in the Game of Go. In Advances in Neural
Information Processing Systems (NIPS), pp. 817–824, Morgan Kaufmann,
San Francisco, CA, 1994.
Latest version
Details
Download:
[pdf] [djvu] [ps.gz]
Unsupervised Learning
S. Günter, N. N. Schraudolph, and S. Vishwanathan.
Fast Iterative Kernel Principal Component Analysis.
Journal of Machine Learning Research, 8:1893–1918, 2007.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph, S. Günter, and S. Vishwanathan.
Fast Iterative Kernel PCA. In Advances in
Neural Information Processing Systems (NIPS), pp. 1225–1232, MIT Press,
Cambridge, MA, 2007.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph, M. Eldracher, and J.
Schmidhuber. Processing Images by Semi-Linear Predictability Minimization.
Network: Computation in Neural Systems, 10(2):133–169, 1999.
Details
Download:
[djvu] [ps.gz]
Entropy Optimization
N. N. Schraudolph. Gradient-Based
Manipulation of Nonparametric Entropy Estimates. IEEE Transactions
on Neural Networks, 15(4):828–837, 2004.
Details
Download:
[pdf] [djvu] [ps.gz]
M. Klapper-Rybicka, N. N. Schraudolph, and
J. Schmidhuber. Unsupervised Learning in Recurrent Neural Networks.
In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 674–681,
Springer Verlag, Berlin, Vienna, Austria, 2001.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and X. Giannakopoulos.
Online Independent Component Analysis With Local Learning
Rate Adaptation. In Advances in Neural Information
Processing Systems (NIPS), pp. 789–795, The MIT Press, Cambridge, MA,
2000.
Details
Download:
[pdf] [djvu] [ps.gz]
P. A. Viola, N. N. Schraudolph, and T.
J. Sejnowski. Empirical Entropy Manipulation for Real-World
Problems. In Advances in Neural Information
Processing Systems (NIPS), pp. 851–857, The MIT Press, Cambridge, MA,
1996.
In Ph.D. thesis Latest version
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Introduction
to Optimization of Entropy with Neural Networks. Ph.D. Thesis, University
of California, San Diego, 1995.
Full Ph.D. thesis
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Optimization of
Entropy with Neural Networks. Ph.D. Thesis, University of California, San
Diego, 1995.
Introduction only Related
papers: Chapter 2 Chapter
3 Chapter 3 Chapter
4
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and T.
J. Sejnowski. Unsupervised Discrimination of Clustered Data
via Optimization of Binary Information Gain. In
Advances in Neural Information Processing Systems (NIPS), pp. 499–506,
Morgan Kaufmann, San Mateo, CA, 1993.
In Ph.D.
thesis
Details
Download:
[pdf] [djvu] [ps.gz]
Competitive Learning
N. N. Schraudolph and T.
J. Sejnowski. Plasticity-Mediated Competitive Learning.
In Advances in Neural Information Processing
Systems (NIPS), pp. 475–480, The MIT Press, Cambridge, MA, 1995.
In Ph.D. thesis
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and T.
J. Sejnowski. Competitive Anti-Hebbian Learning of Invariants.
In Advances in Neural Information Processing
Systems (NIPS), pp. 1017–1024, Morgan Kaufmann, San Mateo, CA, 1992.
In Ph.D. thesis
Details
Download:
[pdf] [djvu] [ps.gz]
Evolutionary Algorithms
D. Büche, N. N. Schraudolph, and P.
Koumoutsakos. Accelerating Evolutionary Algorithms with
Gaussian Process Fitness Function Models. IEEE Transactions on Systems, Man,
and Cybernetics, C35(2):183–194, 2005.
Earlier
version
Details
Download:
[pdf] [djvu] [ps.gz]
D. Büche, N. N. Schraudolph, and P.
Koumoutsakos. Accelerating Evolutionary Algorithms Using
Fitness Function Models. In Genetic and Evolutionary Computation Conference
Workshop Program, pp. 166–169, AAAI, Chicago, 2003.
Latest
version
Details
Download:
[pdf] [djvu] [ps.gz]
S. Müller, N. N. Schraudolph, and P.
Koumoutsakos. Evolutionary and Gradient-Based Algorithms
for Lennard-Jones Cluster Optimization. In Genetic and Evolutionary Computation
Conference Workshop Program, pp. 160–165, AAAI, Chicago, 2003.
Details
Download:
[pdf] [djvu] [ps.gz]
S. Müller, N. N. Schraudolph, P. Koumoutsakos,
and N. Hansen. Step Size Adaptation in Evolution Strategies---Two Approaches.
In Genetic and Evolutionary Computation Conference Workshop Program,
pp. 161–164, AAAI, New York, 2002.
Details
Download:
[pdf] [djvu] [ps.gz]
S. Müller, N. N. Schraudolph, and P.
D. Koumoutsakos. Step Size Adaptation in Evolution Strategies
using Reinforcement Learning. In Proc. Congress on Evolutionary Computation,
pp. 151–156, IEEE, 2002.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Genetic
Algorithm Software Survey. Incorporated as part 5 into the comp.ai.genetic
FAQ,
The Hitch-Hiker's Guide to Evolutionary Computation, 1993.
Details
Download:
[txt.gz]
R. K. Belew, J. McInerney, and N. N. Schraudolph.
Evolving Networks: Using the Genetic Algorithm with
Connectionist Learning. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen,
editors, Artificial Life II, SFI Studies in the Sciences of Complexity: Proceedings,
pp. 511–547, Addison-Wesley, Redwood City, CA, 1992.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and R. K. Belew.
Dynamic Parameter Encoding for Genetic Algorithms. Machine Learning, 9:9–21,
1992.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph and J. J. Grefenstette.
A User's Guide to GAucsd 1.4. Technical Report CS92-249, University
of California, San Diego, 1992.
Details
Download:
[pdf] [djvu] [ps.gz] [sh.gz]
Bioinformatics
G. Cannarozzi, N. N. Schraudolph, M. Faty (joint first authors),
P. v. Rohr, M. T. Friberg, A. C. Roth, G. H. Gonnet, and Y. Barral.
A Role for Codon Order in Translation Dynamics. Cell,
141(2):355–367, 16 Apr 2010.
Details
Download:
[pdf] [djvu] [ps.gz]
S. Vishwanathan, N.
N. Schraudolph, R. Kondor, and K. Borgwardt. Graph Kernels.
Journal of Machine Learning Research,
11:1201–1242, 2010.
Short version
Details
Download:
[pdf] [djvu] [ps.gz]
K. M. Borgwardt, H. Kriegel, S.
Vishwanathan, and N. N. Schraudolph.
Graph Kernels for Disease Outcome Prediction from
Protein-Protein Interaction Networks. In Proc. Pacific Symposium on Biocomputing
(PSB), pp. 4–15, World Scientific, Maui, Hawaii, 2007.
Details
Download:
[pdf] [djvu] [ps.gz]
S. Vishwanathan, K. Borgwardt,
and N. N. Schraudolph.
Fast Computation of Graph Kernels. In Advances
in Neural Information Processing Systems (NIPS), pp. 1449–1456, MIT
Press, Cambridge, MA, 2007.
Long version
Details
Download:
[pdf] [djvu] [ps.gz]
M. T. Friberg, P. Gonnet, Y. Barral, N. N. Schraudolph,
and G. H. Gonnet. Measures of Codon Bias in Yeast, the tRNA Pairing
Index and Possible DNA Repair Mechanisms. In Algorithms in Bioinformatics:
6th Intl. Workshop (WABI), pp. 1–11, Springer
Verlag, Berlin, Zurich, Switzerland, 2006.
Details
Download:
[pdf] [djvu] [ps.gz]
Computer Vision
D. Chik, J. Trumpf, and N. N. Schraudolph.
Using an Adaptive VAR Model for Motion Prediction
in 3D Hand Tracking. In 8th Intl. Conf. Automatic
Face & Gesture Recognition (FG), IEEE, Amsterdam, Netherlands, 2008.
Details
Download:
[pdf] [djvu]
Z. Li, J. Chen, and N. N. Schraudolph.
An Improved Mean-Shift Tracker with Kernel Prediction and Scale Optimisation
Targeting for Low-Frame-Rate Video Tracking. In 19th
Intl. Conf. Pattern Recognition (ICPR), Tampa, Florida, 2008.
Details
Download:
[pdf] [djvu] [ps.gz]
Z. Li, J. Chen, A. Chong, Z. Yu, and N. N. Schraudolph.
Using Stochastic Gradient-Descent Scheme in Appearance
Model Based Face Tracking. In Proc. Intl. Workshop Multimedia Signal Processing
(MMSP), IEEE, Cairns, Australia, 2008.
Details
Download:
[pdf] [djvu] [ps.gz]
M. Bray, E. Koller-Meier, N. N. Schraudolph,
and L. Van Gool. Fast Stochastic Optimization for Articulated
Structure Tracking. Image and Vision Computing, 25(3):352–364, 2007.
Earlier version
Details
Download:
[pdf] [djvu] [ps.gz]
D. Chik, J. Trumpf, and N. N. Schraudolph.
3D Hand Tracking in a Stochastic Approximation Setting. In 2nd
Workshop on Human Motion: Understanding, Modeling, Capture and Animation,
11th IEEE Intl. Conf. Computer Vision (ICCV), pp. 136–151,
Springer Verlag, Berlin, Rio de Janeiro, Brazil,
2007.
Details
Download:
[pdf] [djvu] [ps.gz]
M. Bray, E. Koller-Meier, P. Müller, N.
N. Schraudolph, and L. Van Gool. Stochastic Optimization
for High-Dimensional Tracking in Dense Range Maps. IEE Proceedings
Vision, Image & Signal Processing, 152(4):501–512, 2005.
Earlier
version
Details
Download:
[pdf] [djvu] [ps.gz]
M. Bray, E. Koller-Meier, N. N. Schraudolph,
and L. Van Gool. Stochastic Meta-Descent for Tracking Articulated
Structures. In IEEE Workshop on Articulated and Nonrigid Motion,
Conference on Computer Vision and Pattern Recognition (CVPR), Washington, D.C.,
2004.
Latest version
Details
Download:
[pdf] [djvu] [ps.gz]
M. Bray, E. Koller-Meier, P. Müller, L. Van Gool, and N.
N. Schraudolph. 3D Hand Tracking by Rapid Stochastic Gradient
Descent Using a Skinning Model. In First European Conference
on Visual Media Production (CVMP), pp. 59–68, London, 2004.
Latest
version
Details
Download:
[pdf] [djvu] [ps.gz]
P. A. Viola, N. N. Schraudolph, and T.
J. Sejnowski. Empirical Entropy Manipulation for Real-World
Problems. In Advances in Neural Information
Processing Systems (NIPS), pp. 851–857, The MIT Press, Cambridge, MA,
1996.
In Ph.D. thesis Latest version
Details
Download:
[pdf] [djvu] [ps.gz]
Other
N. N. Schraudolph. Facial
Attraction: Symmetry Considered Harmful.
Journal of Machine Learning Gossip, 2:1–2, 2005.
To be taken with
a grain of salt.
Details
Download:
[pdf] [djvu] [ps.gz]
F. A. Gers, N. N. Schraudolph, and J. Schmidhuber.
Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, 3:115–143,
2002.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. A Generic
Dataflow Programming Environment for Neural Networks. Technical Report IDSIA-15-00,
Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, 2000.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. A Fast,
Compact Approximation of the Exponential Function. Neural
Computation, 11(4):853–862, 1999.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. Combining
Confidence-Tagged Expert Opinions by Alternate Maximization of Likelihood.
Technical Report IDSIA-25-98, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale,
1998.
Details
Download:
[pdf] [djvu] [ps.gz]
N. N. Schraudolph. BibTeX
Bibliography. For Neural Computation,
vol. 1--7, 1997.
Details
Download:
[bib.gz]
N. N. Schraudolph. BibTeX
Bibliography. For John Hertz, Anders Krogh, and Richard Palmer,
Introduction to the Theory of Neural Computation, Addison-Wesley,
1991.
Details
Download:
[bib.gz]