View publications... Download the DjVu plug-in: [download]

by Topic

Ising ModelsGradient DescentQuasi-Newton MethodsStochastic Meta-DescentPreconditioningKernel MethodsReinforcement LearningUnsupervised LearningEntropy OptimizationCompetitive LearningEvolutionary AlgorithmsBioinformaticsComputer VisionOther

Ising Models

N. N. Schraudolph. Polynomial-Time Exact Inference in NP-Hard Binary MRFs via Reweighted Perfect Matching. In 13th Intl. Conf. Artificial Intelligence and Statistics (AIstats), pp. 717–724, Journal of Machine Learning Research, Chia Laguna, Italy, 2010.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and D. Kamenetsky. Efficient Exact Inference in Planar Ising Models. In Advances in Neural Information Processing Systems (NIPS), pp. 1417–1424, Curran Associates, Inc., 2009.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and D. Kamenetsky. Efficient Exact Inference in Planar Ising Models. Technical Report 0810.4401, arXiv, 2008.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

Gradient Descent

N. N. Schraudolph and T. Graepel. Combining Conjugate Direction Methods with Stochastic Approximation of Gradients. In Proc. 9th Intl. Workshop Artificial Intelligence and Statistics (AIstats), pp. 7–13, Society for Artificial Intelligence and Statistics, Key West, Florida, 2003.
Earlier version     Related paper
Details     Download: [pdf] [djvu] [ps.gz] 

T. Graepel and N. N. Schraudolph. Stable Adaptive Momentum for Rapid Online Learning in Nonlinear Systems. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 450–455, Springer Verlag, Berlin, Madrid, Spain, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. Graepel. Towards Stochastic Conjugate Gradient Methods. In Proc. 9th Intl. Conf. Neural Information Processing (ICONIP), pp. 853–856, IEEE, 2002.
Related paper
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. Graepel. Conjugate Directions for Stochastic Gradient Descent. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 1351–1356, Springer Verlag, Berlin, Madrid, Spain, 2002.
Latest version     Related paper
Details     Download: [pdf] [djvu] [ps.gz] 

Quasi-Newton Methods

J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning. Journal of Machine Learning Research, 11:1145–1200, 2010.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

P. Sunehag, J. Trumpf, S. Vishwanathan, and N. N. Schraudolph. Variable Metric Stochastic Approximation Theory. In Proc. 12th Intl. Conf. Artificial Intelligence and Statistics (AIstats), pp. 560–566, Journal of Machine Learning Research, Clearwater Beach, Florida, 2009.
Details     Download: [pdf] [djvu] [ps.gz] 

J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex Optimization. In Proc. 25th Intl. Conf. Machine Learning (ICML), pp. 1216–1223, Omnipress, Helsinki, Finland, 2008.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, J. Yu, and S. Günter. A Stochastic Quasi-Newton Method for Online Convex Optimization. In Proc. 11th Intl. Conf. Artificial Intelligence and Statistics (AIstats), pp. 436–443, Journal of Machine Learning Research, San Juan, Puerto Rico, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

Stochastic Meta-Descent

D. Chik, J. Trumpf, and N. N. Schraudolph. Using an Adaptive VAR Model for Motion Prediction in 3D Hand Tracking. In 8th Intl. Conf. Automatic Face & Gesture Recognition (FG), IEEE, Amsterdam, Netherlands, 2008.
Details     Download: [pdf] [djvu] 

Z. Li, J. Chen, and N. N. Schraudolph. An Improved Mean-Shift Tracker with Kernel Prediction and Scale Optimisation Targeting for Low-Frame-Rate Video Tracking. In 19th Intl. Conf. Pattern Recognition (ICPR), Tampa, Florida, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

Z. Li, J. Chen, A. Chong, Z. Yu, and N. N. Schraudolph. Using Stochastic Gradient-Descent Scheme in Appearance Model Based Face Tracking. In Proc. Intl. Workshop Multimedia Signal Processing (MMSP), IEEE, Cairns, Australia, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Fast Stochastic Optimization for Articulated Structure Tracking. Image and Vision Computing, 25(3):352–364, 2007.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

D. Chik, J. Trumpf, and N. N. Schraudolph. 3D Hand Tracking in a Stochastic Approximation Setting. In 2nd Workshop on Human Motion: Understanding, Modeling, Capture and Animation, 11th IEEE Intl. Conf. Computer Vision (ICCV), pp. 136–151, Springer Verlag, Berlin, Rio de Janeiro, Brazil, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Günter, N. N. Schraudolph, and S. Vishwanathan. Fast Iterative Kernel Principal Component Analysis. Journal of Machine Learning Research, 8:1893–1918, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, S. Günter, and S. Vishwanathan. Fast Iterative Kernel PCA. In Advances in Neural Information Processing Systems (NIPS), pp. 1225–1232, MIT Press, Cambridge, MA, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, J. Yu, and D. Aberdeen. Fast Online Policy Gradient Learning with SMD Gain Vector Adaptation. In Advances in Neural Information Processing Systems (NIPS), pp. 1185–1192, MIT Press, Cambridge, MA, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. Murphy. Accelerated Training of Conditional Random Fields with Stochastic Gradient Methods. In Proc. 23rd Intl. Conf. Machine Learning (ICML), pp. 969–976, ACM Press, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step Size Adaptation in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research, 7:1107–1133, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, N. N. Schraudolph, and L. Van Gool. Stochastic Optimization for High-Dimensional Tracking in Dense Range Maps. IEE Proceedings Vision, Image & Signal Processing, 152(4):501–512, 2005.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

A. Karatzoglou, S. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step Size-Adapted Online Support Vector Learning. In Proc. 8th Intl. Symp. Signal Processing & Applications, IEEE, 2005.
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Stochastic Meta-Descent for Tracking Articulated Structures. In IEEE Workshop on Articulated and Nonrigid Motion, Conference on Computer Vision and Pattern Recognition (CVPR), Washington, D.C., 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, L. Van Gool, and N. N. Schraudolph. 3D Hand Tracking by Rapid Stochastic Gradient Descent Using a Skinning Model. In First European Conference on Visual Media Production (CVMP), pp. 59–68, London, 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Fast Curvature Matrix-Vector Products for Second-Order Gradient Descent. Neural Computation, 14(7):1723–1738, 2002.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Fast Curvature Matrix-Vector Products. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 19–26, Springer Verlag, Berlin, Vienna, Austria, 2001.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and X. Giannakopoulos. Online Independent Component Analysis With Local Learning Rate Adaptation. In Advances in Neural Information Processing Systems (NIPS), pp. 789–795, The MIT Press, Cambridge, MA, 2000.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Online Learning with Adaptive Local Step Sizes. In Neural Nets---WIRN Vietri-99: Proc. 11th Italian Workshop on Neural Networks, pp. 151–156, Springer Verlag, Berlin, Vietri sul Mare, Salerno, Italy, 1999.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Local Gain Adaptation in Stochastic Gradient Descent. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 569–574, IEE, London, Edinburgh, Scotland, 1999.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Online Local Gain Adaptation for Multi-Layer Perceptrons. Technical Report IDSIA-09-98, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, 1998.
Details     Download: [pdf] [djvu] [ps.gz] 

Preconditioning

N. N. Schraudolph. Accelerated Gradient Descent by Factor-Centering Decomposition. Technical Report IDSIA-33-98, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, 1998.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Slope Centering: Making Shortcut Weights Effective. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 523–528, Springer Verlag, Berlin, Skövde, Sweden, 1998.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Centering Neural Network Gradient Factors. In G. B. Orr and K. Müller, editors, Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, pp. 207–226, Springer Verlag, Berlin, 1998.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. J. Sejnowski. Tempering Backpropagation Networks: Not All Weights Are Created Equal. In Advances in Neural Information Processing Systems (NIPS), pp. 563–569, The MIT Press, Cambridge, MA, 1996.
Details     Download: [pdf] [djvu] [ps.gz] 

Kernel Methods

S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. Borgwardt. Graph Kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

K. M. Borgwardt, H. Kriegel, S. Vishwanathan, and N. N. Schraudolph. Graph Kernels for Disease Outcome Prediction from Protein-Protein Interaction Networks. In Proc. Pacific Symposium on Biocomputing (PSB), pp. 4–15, World Scientific, Maui, Hawaii, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Günter, N. N. Schraudolph, and S. Vishwanathan. Fast Iterative Kernel Principal Component Analysis. Journal of Machine Learning Research, 8:1893–1918, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, S. Günter, and S. Vishwanathan. Fast Iterative Kernel PCA. In Advances in Neural Information Processing Systems (NIPS), pp. 1225–1232, MIT Press, Cambridge, MA, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, K. Borgwardt, and N. N. Schraudolph. Fast Computation of Graph Kernels. In Advances in Neural Information Processing Systems (NIPS), pp. 1449–1456, MIT Press, Cambridge, MA, 2007.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step Size Adaptation in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research, 7:1107–1133, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

A. Karatzoglou, S. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step Size-Adapted Online Support Vector Learning. In Proc. 8th Intl. Symp. Signal Processing & Applications, IEEE, 2005.
Details     Download: [pdf] [djvu] [ps.gz] 

Reinforcement Learning

N. N. Schraudolph, J. Yu, and D. Aberdeen. Fast Online Policy Gradient Learning with SMD Gain Vector Adaptation. In Advances in Neural Information Processing Systems (NIPS), pp. 1185–1192, MIT Press, Cambridge, MA, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Learning to Evaluate Go Positions via Temporal Difference Methods. In N. Baba and L. C. Jain, editors, Computational Intelligence in Games, Studies in Fuzziness and Soft Computing, pp. 77–98, Springer Verlag, Berlin, 2001.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

J. Schmidhuber, J. Zhao, and N. N. Schraudolph. Reinforcement Learning with Self-Modifying Policies. In S. Thrun and L. Pratt, editors, Learning to Learn, pp. 293–309, Kluwer Academic Publishers, Norwell, MA, 1998.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Temporal Difference Learning of Position Evaluation in the Game of Go. In Advances in Neural Information Processing Systems (NIPS), pp. 817–824, Morgan Kaufmann, San Francisco, CA, 1994.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

Unsupervised Learning

S. Günter, N. N. Schraudolph, and S. Vishwanathan. Fast Iterative Kernel Principal Component Analysis. Journal of Machine Learning Research, 8:1893–1918, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, S. Günter, and S. Vishwanathan. Fast Iterative Kernel PCA. In Advances in Neural Information Processing Systems (NIPS), pp. 1225–1232, MIT Press, Cambridge, MA, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, M. Eldracher, and J. Schmidhuber. Processing Images by Semi-Linear Predictability Minimization. Network: Computation in Neural Systems, 10(2):133–169, 1999.
Details     Download: [djvu] [ps.gz] 

Entropy Optimization

N. N. Schraudolph. Gradient-Based Manipulation of Nonparametric Entropy Estimates. IEEE Transactions on Neural Networks, 15(4):828–837, 2004.
Details     Download: [pdf] [djvu] [ps.gz] 

M. Klapper-Rybicka, N. N. Schraudolph, and J. Schmidhuber. Unsupervised Learning in Recurrent Neural Networks. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 674–681, Springer Verlag, Berlin, Vienna, Austria, 2001.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and X. Giannakopoulos. Online Independent Component Analysis With Local Learning Rate Adaptation. In Advances in Neural Information Processing Systems (NIPS), pp. 789–795, The MIT Press, Cambridge, MA, 2000.
Details     Download: [pdf] [djvu] [ps.gz] 

P. A. Viola, N. N. Schraudolph, and T. J. Sejnowski. Empirical Entropy Manipulation for Real-World Problems. In Advances in Neural Information Processing Systems (NIPS), pp. 851–857, The MIT Press, Cambridge, MA, 1996.
In Ph.D. thesis     Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Introduction to Optimization of Entropy with Neural Networks. Ph.D. Thesis, University of California, San Diego, 1995.
Full Ph.D. thesis
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Optimization of Entropy with Neural Networks. Ph.D. Thesis, University of California, San Diego, 1995.
Introduction only     Related papers:   Chapter 2   Chapter 3   Chapter 3   Chapter 4
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. J. Sejnowski. Unsupervised Discrimination of Clustered Data via Optimization of Binary Information Gain. In Advances in Neural Information Processing Systems (NIPS), pp. 499–506, Morgan Kaufmann, San Mateo, CA, 1993.
In Ph.D. thesis
Details     Download: [pdf] [djvu] [ps.gz] 

Competitive Learning

N. N. Schraudolph and T. J. Sejnowski. Plasticity-Mediated Competitive Learning. In Advances in Neural Information Processing Systems (NIPS), pp. 475–480, The MIT Press, Cambridge, MA, 1995.
In Ph.D. thesis
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. J. Sejnowski. Competitive Anti-Hebbian Learning of Invariants. In Advances in Neural Information Processing Systems (NIPS), pp. 1017–1024, Morgan Kaufmann, San Mateo, CA, 1992.
In Ph.D. thesis
Details     Download: [pdf] [djvu] [ps.gz] 

Evolutionary Algorithms

D. Büche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating Evolutionary Algorithms with Gaussian Process Fitness Function Models. IEEE Transactions on Systems, Man, and Cybernetics, C35(2):183–194, 2005.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

D. Büche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating Evolutionary Algorithms Using Fitness Function Models. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 166–169, AAAI, Chicago, 2003.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

S. Müller, N. N. Schraudolph, and P. Koumoutsakos. Evolutionary and Gradient-Based Algorithms for Lennard-Jones Cluster Optimization. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 160–165, AAAI, Chicago, 2003.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Müller, N. N. Schraudolph, P. Koumoutsakos, and N. Hansen. Step Size Adaptation in Evolution Strategies---Two Approaches. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 161–164, AAAI, New York, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Müller, N. N. Schraudolph, and P. D. Koumoutsakos. Step Size Adaptation in Evolution Strategies using Reinforcement Learning. In Proc. Congress on Evolutionary Computation, pp. 151–156, IEEE, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Genetic Algorithm Software Survey. Incorporated as part 5 into the comp.ai.genetic FAQ, The Hitch-Hiker's Guide to Evolutionary Computation, 1993.
Details     Download: [txt.gz] 

R. K. Belew, J. McInerney, and N. N. Schraudolph. Evolving Networks: Using the Genetic Algorithm with Connectionist Learning. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, SFI Studies in the Sciences of Complexity: Proceedings, pp. 511–547, Addison-Wesley, Redwood City, CA, 1992.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and R. K. Belew. Dynamic Parameter Encoding for Genetic Algorithms. Machine Learning, 9:9–21, 1992.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and J. J. Grefenstette. A User's Guide to GAucsd 1.4. Technical Report CS92-249, University of California, San Diego, 1992.
Details     Download: [pdf] [djvu] [ps.gz] [sh.gz] 

Bioinformatics

G. Cannarozzi, N. N. Schraudolph, M. Faty (joint first authors), P. v. Rohr, M. T. Friberg, A. C. Roth, G. H. Gonnet, and Y. Barral. A Role for Codon Order in Translation Dynamics. Cell, 141(2):355–367, 16 Apr 2010.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. Borgwardt. Graph Kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

K. M. Borgwardt, H. Kriegel, S. Vishwanathan, and N. N. Schraudolph. Graph Kernels for Disease Outcome Prediction from Protein-Protein Interaction Networks. In Proc. Pacific Symposium on Biocomputing (PSB), pp. 4–15, World Scientific, Maui, Hawaii, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, K. Borgwardt, and N. N. Schraudolph. Fast Computation of Graph Kernels. In Advances in Neural Information Processing Systems (NIPS), pp. 1449–1456, MIT Press, Cambridge, MA, 2007.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

M. T. Friberg, P. Gonnet, Y. Barral, N. N. Schraudolph, and G. H. Gonnet. Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible DNA Repair Mechanisms. In Algorithms in Bioinformatics: 6th Intl. Workshop (WABI), pp. 1–11, Springer Verlag, Berlin, Zurich, Switzerland, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

Computer Vision

D. Chik, J. Trumpf, and N. N. Schraudolph. Using an Adaptive VAR Model for Motion Prediction in 3D Hand Tracking. In 8th Intl. Conf. Automatic Face & Gesture Recognition (FG), IEEE, Amsterdam, Netherlands, 2008.
Details     Download: [pdf] [djvu] 

Z. Li, J. Chen, and N. N. Schraudolph. An Improved Mean-Shift Tracker with Kernel Prediction and Scale Optimisation Targeting for Low-Frame-Rate Video Tracking. In 19th Intl. Conf. Pattern Recognition (ICPR), Tampa, Florida, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

Z. Li, J. Chen, A. Chong, Z. Yu, and N. N. Schraudolph. Using Stochastic Gradient-Descent Scheme in Appearance Model Based Face Tracking. In Proc. Intl. Workshop Multimedia Signal Processing (MMSP), IEEE, Cairns, Australia, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Fast Stochastic Optimization for Articulated Structure Tracking. Image and Vision Computing, 25(3):352–364, 2007.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

D. Chik, J. Trumpf, and N. N. Schraudolph. 3D Hand Tracking in a Stochastic Approximation Setting. In 2nd Workshop on Human Motion: Understanding, Modeling, Capture and Animation, 11th IEEE Intl. Conf. Computer Vision (ICCV), pp. 136–151, Springer Verlag, Berlin, Rio de Janeiro, Brazil, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, N. N. Schraudolph, and L. Van Gool. Stochastic Optimization for High-Dimensional Tracking in Dense Range Maps. IEE Proceedings Vision, Image & Signal Processing, 152(4):501–512, 2005.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Stochastic Meta-Descent for Tracking Articulated Structures. In IEEE Workshop on Articulated and Nonrigid Motion, Conference on Computer Vision and Pattern Recognition (CVPR), Washington, D.C., 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, L. Van Gool, and N. N. Schraudolph. 3D Hand Tracking by Rapid Stochastic Gradient Descent Using a Skinning Model. In First European Conference on Visual Media Production (CVMP), pp. 59–68, London, 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

P. A. Viola, N. N. Schraudolph, and T. J. Sejnowski. Empirical Entropy Manipulation for Real-World Problems. In Advances in Neural Information Processing Systems (NIPS), pp. 851–857, The MIT Press, Cambridge, MA, 1996.
In Ph.D. thesis     Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

Other

N. N. Schraudolph. Facial Attraction: Symmetry Considered Harmful. Journal of Machine Learning Gossip, 2:1–2, 2005.
To be taken with a grain of salt.
Details     Download: [pdf] [djvu] [ps.gz] 

F. A. Gers, N. N. Schraudolph, and J. Schmidhuber. Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, 3:115–143, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. A Generic Dataflow Programming Environment for Neural Networks. Technical Report IDSIA-15-00, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, 2000.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. A Fast, Compact Approximation of the Exponential Function. Neural Computation, 11(4):853–862, 1999.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. Combining Confidence-Tagged Expert Opinions by Alternate Maximization of Likelihood. Technical Report IDSIA-25-98, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, 1998.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph. BibTeX Bibliography. For Neural Computation, vol. 1--7, 1997.
Details     Download: [bib.gz] 

N. N. Schraudolph. BibTeX Bibliography. For John Hertz, Anders Krogh, and Richard Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, 1991.
Details     Download: [bib.gz] 


Generated by bib2html.pl (written by Patrick Riley) on Thu Sep 25, 2014 12:00:33